The unit step signal is denoted as $ u[n] $ and is defined as $$ u[n] = \begin{cases} 1 & \mbox{for $n \ge 0$} \\ 0 & \mbox{for $n < 0$} \end{cases} $$
Let’s implement unit step signal by python code
#Code written by: Al Mamun Siddiki
#Roll no: SH-81
import numpy as np
import matplotlib.pyplot as plt
n = range(-2, 6, 1)
y = []
for i in range(len(n)):
temp = (1 if n[i]>=0 else 0)
y.append(temp)
print(n)
print(y)
#plotting the graph
plt.stem(n, y)
plt.axis([-2.1, 5.1, -0.1, 1.2])
plt.show()
The unit ramp signal is denoted as $ u_r[n] $ and defined as $$ u_r[n] = \begin{cases} n & \mbox{for $n \ge 0$} \\ 0 & \mbox{for $n < 0$} \end{cases} $$
Let’s implement unit ramp signal by python code.
n = range(-2, 6, 1)
y = []
for i in range(len(n)):
temp = (n[i] if n[i]>=0 else 0)
y.append(temp)
print(list(n))
print(y)
#Plotting the graph
plt.stem(n, y)
plt.axis([-2.1, 5.1, -0.1, 5.2])
plt.xlabel(' n---> ')
plt.ylabel('Amplitude ----> ')
plt.title('Unit ramp Signal')
plt.grid(True)
plt.show()
The exponential signal is a sequence of the form $$ y[n] = a^n \quad for \quad all \quad n $$
Let’s implement exponential signal by python code.
a = 0.9
n = range(0, 26, 1)
y = []
for i in range(len(n)):
temp = a**n[i]
y.append(temp)
#Plotting the graph
plt.stem(y)
plt.axis([-0.3, 25.1, -0.1, 1.1])
plt.xlabel(' n---> ')
plt.ylabel('Amplitude ----> ')
plt.title('Exponential signal for 0 < a < 1')
plt.grid(True)
plt.show()